张文迪的博客

数据分析及数据化运营-BI仪表盘及数据运营项目咨询与实施

数据分析的“道”——企业数据分析方法

<a href=数据分析的“道”——企业数据分析方法" title="数据分析的“道”——企业数据分析方法" src="http://zwd56.cn/zb_users/upload/2017/10/201710211508597375731043.png" title="201709021504309640333523 (1).png" alt="201709021504309640333523 (1).png"/>


所谓企业数据分析的道,即为企业数据分析的方法。对于企业而言,数据分析需要与业务紧密结合,一切脱离业务的数据分析,都是耍流氓。而要数据紧贴业务,则数据分析人员需要对整个业务流程了解,明白所有数据的出处、流向。此概念类似于在做企业信息资源规划(IRP)的过程中的数据流图。虽然这个概念已经有一段时间,但是目前国内的中小企业而言,仍旧难以落地实施,其标准化过程仍旧艰难重重。


提到数据分析的方法,很多人还会提到数据分析的基本流程。此处将整个流程分成了两个部分,一方面是对业务流程的梳理、一方面是对数据模型的建立,这两个过程中其实是贯穿在整个数据分析流程中的,而整个数据分析流程又是一个PDCA的闭环过程。


数据分析的“道”——企业数据分析方法


对于企业数据分析,尤其是实体行业企业,第一个层次是业务流程的梳理。要对业务流程数据进行标准化,这其中不仅仅是数据格式的标准化,更是对数据出处的标准化,对数据字段名称概念的标准化。这样,便才可以达到“数出一门”。而另一个维度来看,是财务数据关系的梳理,梳理公司业务中的收入、成本、毛利、利润、间接成本、费用等细项之间的关系。梳理这个主要原因是不同公司的费用、成本归属不同,寻求合理的费用归属,会对公司的经营分析工作带来极大的便利;反之,则会造成费用项不清,数据难以支持实际经营的分析。


通过对业务数据、财务数据的梳理,将这些数据标准化,然后进行分析,这时变需要用到各种常用的分析方法。



对于数据分析的方法,可以从两个层次来谈,有一部分前辈认为可以叫为数据分析和数据挖掘。我不太喜欢搞太多概念性的东西,还是实在一点好,姑且就是数据分析的方法,只不过有一些新的人工智能方法应用而已。


首先说常用的几种方法:


1、交叉表分析


交叉列表分析法是指同时将两个或两个以上有一定联系的变量及其变量值按照一定的顺序交叉排列在一张统计表内,使各变量值成为不同变量的结点,从中分析变量之间的相关关系,进而得出科学结论的一种数据分析技术。


简单的说就是将一份数据的两个列做交叉进行分析。比如一列数字是性别,一列数字是消费金额,做成交叉表就是男性和女性分别的消费总额是多少。所谓交叉表说的高大上,平时也可以叫透视表分析。其实excel的透视表基本可以满足,稍微大型一些数据,用SQL语句也完全可以查询出来。


2、聚类分析


聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程。


聚类分析最经典的案例要算啤酒与尿布的购物篮算法,至于其中的故事,网上有好多,此处不予赘述。购物篮分析最常用的便是Apriori算法,现在使用R语言或者Python便可以轻松调用其相关算法包,进行支持度和置信度的计算。


2、回归分析


回归分析常用在预测模型当中,回归分析主要是分析两个事物之间的相关情况,然后寻求其中的规律,如线性回归、logistic回归等等。


3、杜邦分析


杜邦分析一般是财务上常用的分析方法,其将利润或者毛利进行细致拆分,通过各个指标的变化比较,来分析其多总体的影响。一般情况,杜邦分析多采用多个企业或项目进行比较,对于单个企业或项目的杜邦分析,意义较小。


4、RFM分析


RFM分析是在客户运营和会员运营方面最最常用的方法,通过看客户在一段时间内的购买次数、最近购买时间和购买金额,来对客户进行分类,对客户进行打标签,进而对其进行有针对性的精准营销


当然,数据分析的方法模型,不仅仅限于这几种,对于数据分析来说,涉及供应链不同环节的企业,分析方法和分析指标也有所区别,其数据分析的侧重点也有所不同。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

«   2019年9月   »
1
2345678
9101112131415
16171819202122
23242526272829
30
搜索
网站分类
文章归档
最新留言
控制面板
您好,欢迎到访网站!
  查看权限
友情链接

Powered By Z-BlogPHP 1.5.2 Zero

Copyright 张文迪. 备案号:辽ICP备15006660号-2

展开